整体思路
为 Softmax 分类器实现损失函数和梯度
使用验证集调整学习率和正则化强度
使用 SGD 优化损失函数
可视化最终学习的权重
加载并展示数据集
def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000, num_dev=500): """ Load the CIFAR-10 dataset from disk and perform preprocessing to prepare it for the linear classifier. These are the same steps as we used for the SVM, but condensed to a single function. """ # Load the raw CIFAR-10 data #加载CIFAR-10数据集 cifar10_dir = 'cs231n/datasets/cifar-10-batches-py' # Cleaning up variables to prevent loading data multiple times (which may cause memory issue) #清除变量 try: del X_train, y_train del X_test, y_test print('Clear previously loaded data.') except: pass X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) # subsample the data #对数据二次采样,取部分数据 mask = list(range(num_training, num_training + num_validation)) X_val = X_train[mask] y_val = y_train[mask] mask = list(range(num_training)) X_train = X_train[mask] y_train = y_train[mask] mask = list(range(num_test)) X_test = X_test[mask] y_test = y_test[mask] mask = np.random.choice(num_training, num_dev, replace=False) X_dev = X_train[mask] y_dev = y_train[mask] # Preprocessing: reshape the image data into rows #将图像数据转化为行向量 X_train = np.reshape(X_train, (X_train.shape[0], -1)) X_val = np.reshape(X_val, (X_val.shape[0], -1)) X_test = np.reshape(X_test, (X_test.shape[0], -1)) X_dev = np.reshape(X_dev, (X_dev.shape[0], -1)) # Normalize the data: subtract the mean image #归一化:减去均值(也可以再除以方差 mean_image = np.mean(X_train, axis = 0) X_train -= mean_image X_val -= mean_image X_test -= mean_image X_dev -= mean_image # add bias dimension and transform into columns #添加偏差维度并转换为列 X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))]) X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))]) X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))]) X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))]) return X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev # Invoke the above function to get our data. #调用上面的函数来获取数据 X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev = get_CIFAR10_data() #打印数据维度 print('Train data shape: ', X_train.shape) print('Train labels shape: ', y_train.shape) print('Validation data shape: ', X_val.shape) print('Validation labels shape: ', y_val.shape) print('Test data shape: ', X_test.shape) print('Test labels shape: ', y_test.shape) print('dev data shape: ', X_dev.shape) print('dev labels shape: ', y_dev.shape)
计算损失函数
(推导来自知乎用户龙鹏-笔名言有三)
然后完成
def softmax_loss_naive(W, X, y, reg): """ Softmax loss function, naive implementation (with loops) Inputs have dimension D, there are C classes, and we operate on minibatches of N examples. Inputs: - W: A numpy array of shape (D, C) containing weights. - X: A numpy array of shape (N, D) containing a minibatch of data. - y: A numpy array of shape (N,) containing training labels; y[i] = c means that X[i] has label c, where 0 <= c < C. - reg: (float) regularization strength Returns a tuple of: - loss as single float - gradient with respect to weights W; an array of same shape as W """ loss=0.0 dW=np.zeros_like(W) # Initialize the loss and gradient to zero. # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** N = X.shape[0] C = W.shape[1] for i in range(N): score = X[i].dot(W) score -= np.max(score) # 防止爆炸 correct_score = score[y[i]] # 取分类正确的score exp_sum = np.sum(np.exp(score)) loss += np.log(exp_sum) - correct_score for j in xrange(C): if j == y[i]: dW[:, j] += np.exp(score[j]) / exp_sum * X[i] - X[i] else: dW[:, j] += np.exp(score[j]) / exp_sum * X[i] loss /= N loss += reg * np.sum(W * W) dW /= N dW += reg * W # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** return loss, dW
(推导来自知乎用户yixuan7002)
?
? (推导来自知乎用户龙鹏-笔名言有三)
然后完成
def softmax_loss_vectorized(W, X, y, reg): """ Softmax loss function, vectorized version. Inputs and outputs are the same as softmax_loss_naive. """ # Initialize the loss and gradient to zero. loss = 0.0 dW = np.zeros_like(W) ############################################################################# # TODO: Compute the softmax loss and its gradient using no explicit loops. # # Store the loss in loss and the gradient in dW. If you are not careful # # here, it is easy to run into numeric instability. Don't forget the # # regularization! # ############################################################################# # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** N = X.shape[0] C = W.shape[1] #损失 scores = X.dot(W) #指数化 exp_score = np.exp(scores) #求和 exp_scores_sum = np.sum(exp_score,1) #计算比例 correct_probs = exp_score[range(N),y]/exp_scores_sum #取负对数 correct_logprobs =- np.log(correct_probs) #平均损失 loss = np.sum(correct_logprobs)/N #正则化 loss = loss+reg * np.sum(W * W) #dW margin = exp_score/exp_scores_sum.reshape(N,1) margin[np.arange(N),y] = margin[np.arange(N),y]-1 dW = X.T.dot(margin)/N dW = dW+reg*W # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** return loss, dW
在数据集上验证损失函数和梯度
# Complete the implementation of softmax_loss_naive and implement a (naive) # version of the gradient that uses nested loops. loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0) # As we did for the SVM, use numeric gradient checking as a debugging tool. # The numeric gradient should be close to the analytic gradient. from cs231n.gradient_check import grad_check_sparse f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 0.0)[0] grad_numerical = grad_check_sparse(f, W, grad, 10) # similar to SVM case, do another gradient check with regularization loss, grad = softmax_loss_naive(W, X_dev, y_dev, 5e1) f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 5e1)[0] grad_numerical = grad_check_sparse(f, W, grad, 10)
对比两种计算方法的效率差异
# Now that we have a naive implementation of the softmax loss function and its gradient, # implement a vectorized version in softmax_loss_vectorized. # The two versions should compute the same results, but the vectorized version should be # much faster. tic = time.time() loss_naive, grad_naive = softmax_loss_naive(W, X_dev, y_dev, 0.000005) toc = time.time() print('naive loss: %e computed in %fs' % (loss_naive, toc - tic)) from cs231n.classifiers.softmax import softmax_loss_vectorized tic = time.time() loss_vectorized, grad_vectorized = softmax_loss_vectorized(W, X_dev, y_dev, 0.000005) toc = time.time() print('vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic)) # As we did for the SVM, we use the Frobenius norm to compare the two versions # of the gradient. grad_difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro') print('Loss difference: %f' % np.abs(loss_naive - loss_vectorized)) print('Gradient difference: %f' % grad_difference)
使用SGD优化损失函数
# Use the validation set to tune hyperparameters (regularization strength and # learning rate). You should experiment with different ranges for the learning # rates and regularization strengths; if you are careful you should be able to # get a classification accuracy of over 0.35 on the validation set. from cs231n.classifiers import Softmax results = {} best_val = -1 best_softmax = None ################################################################################ # TODO: # # Use the validation set to set the learning rate and regularization strength. # # This should be identical to the validation that you did for the SVM; save # # the best trained softmax classifer in best_softmax. # ################################################################################ # Provided as a reference. You may or may not want to change these hyperparameters learning_rates = [1e-7, 5e-7] regularization_strengths = [2.5e4, 5e4] # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** #SGD详解参考上一篇SVM for learning_rate in learning_rates: for regularization_strength in regularization_strengths: softmax = Softmax() loss_hist = softmax.train(X_train, y_train, learning_rate=learning_rate, reg=regularization_strength, num_iters=1500, verbose=True) y_train_pred2 = softmax.predict(X_train) training_accuracy = np.mean(y_train == softmax.predict(X_train)) print('training accuracy: %f' % (np.mean(y_train == y_train_pred2))) y_val_pred2 = softmax.predict(X_val) val_accuracy = np.mean(y_val== softmax.predict(X_val)) print('validation accuracy: %f' % (np.mean(y_val == y_val_pred2))) results[(learning_rate,regularization_strength)] = (training_accuracy,val_accuracy) print(results) if best_val < val_accuracy: best_val = val_accuracy best_softmax = softmax # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** # Print out results. for lr, reg in sorted(results): train_accuracy, val_accuracy = results[(lr, reg)] print('lr %e reg %e train accuracy: %f val accuracy: %f' % ( lr, reg, train_accuracy, val_accuracy)) print('best validation accuracy achieved during cross-validation: %f' % best_val)
在测试集上进行预测并计算准确率
# evaluate on test set # Evaluate the best softmax on test set #用最好的softmax模型在测试集进行计算 y_test_pred = best_softmax.predict(X_test) test_accuracy = np.mean(y_test == y_test_pred) print('softmax on raw pixels final test set accuracy: %f' % (test_accuracy, ))
可视化权重矩阵
# Visualize the learned weights for each class w = best_softmax.W[:-1,:] # strip out the bias w = w.reshape(32, 32, 3, 10) w_min, w_max = np.min(w), np.max(w) classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] for i in range(10): plt.subplot(2, 5, i + 1) # Rescale the weights to be between 0 and 255 wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min) plt.imshow(wimg.astype('uint8')) plt.axis('off') plt.title(classes[i])